The method and process to back analyze the above initial geostress in linear elasticity material with finite element method is discussed,followed by an example.
讨论了在线弹性介质中,通过有限元计算求解这种地应力的方法、过程,并给出算例。
The linearity-elasticity method, the moment-adjusting method and the plasticity limit analyzing method for calculating the bending moment of two-way slabs are studied and summed up in this paper, on the basis of which a new quick and precise quadratic regression method for the calculation of parameters for the linearity-elasticity method is put forward.
归纳分析了双向板的三种实用计算方法线弹性分析法、弯矩调幅法以及塑性极限分析法,建立了快捷精确的线弹性法的二次回归参数计算方法。
A 3 dimension linear elastic model and a 3 dimension nonlinear elastic model of concrete arch dam are developed considering the dam and its foundation as an interactive system.
将拱坝坝体与地基当作一个藕连的体系 ,建立三维线弹性与非线弹性力学模型 ,引入随机变量 ,对该模型进行随机分析 。
In this paper, we use linear elastic and power hardening function to approximately represent the stress-strain curve of material.
将材料的本构关系描述为线弹性幂强化形式,推导出了各杆铰接在一个定轴转动刚体上的平面杆系弹塑性分析的普遍表达式,使问题得到了圆满的解决。
The unified asymptotic govering equations of the linear elastic crack fi elds of mode I with finite deformation were established without any demarcation schemes.
对有限变形下线弹性Ⅰ型裂纹场建立了无需分区的统一控制方程并进行了浙近分析,利用“打靶法”得到位移场在物质描述与空间描述下的渐近阶次分别为3/4和1,Green应变、第二类P-K应力及Cauchy应力在物质描述与空间描述下的渐近阶次分别为-1/2和-2/3;对不同泊松比,裂尖有限变形线弹性场的位移均以U_Ⅱ或u_2为主导,裂纹张开角为π,现时构形中的大变形区为一垂直初始构形中裂纹表面的狭长带状区,应力则处于由σ_(22)主导的单向拉伸状态,角分布函数U_Ⅱ及σ_(22)(0)具有奇异性,但U_L/U_Ⅱ(0)及σ_(ij)(θ)/σ_(22)(0)均趋于有限值。
A 3 dimension linear elastic model and a 3 dimension nonlinear elastic model of concrete arch dam are developed considering the dam and its foundation as an interactive system.
将拱坝坝体与地基当作一个藕连的体系 ,建立三维线弹性与非线弹性力学模型 ,引入随机变量 ,对该模型进行随机分析 。
In this paper, we use two exponential functions to approximately represent the stress- strain relation of nonlinearly elastic material and analyze strength - difference structure of the space pin-jointed bars.
以两个指数函数近似表示拉压异性非线弹性材料的应力一应变关系,分析了拉压性能不同非线弹性材料空间汇交杆系,用位移法推导出了应力应变计算的普遍表达式,给出了计算汇交点位移的非线性方程组,编制了通用的数值计算程序,计算准确方便,使这一问题得到了圆满的解决。
In the structure, tensile bars are usually made from a nonlinearly elastic high-strengthmaterial.
以指数函数近似表示非线弹性材料的应力-应交关系,推导出了非线弹性材料平面杆系结构应力应变计算的普遍表达式,编制了通用程序,使这一类问题有了一个通用的解题方法。