This paper points out the relationship between the coefficient of Laurent series and that of the sum of partial fractions for rational functions.
笔者在此指出了罗朗级数的系数与有理函数分解的部分分式之和的系数之间的关系 ,并举出应用实例。
It is widely used to develop complex functions into Laurent series at the neighborhood of a pole.
在数学中经常要用到复变函数在极点邻域内展开的罗朗级数。
Recently,the paper [1] have studied the Laurent coefficients of such transform F(z) =∫k(z-w)-1 dμ(w) of Hausdorff measure in |z|>1.
1)组成的迭代函数系(IFS),其中0<ρ<ρq,εj=e2jπiq(ρq的定义见[1]),K是{sj}q-1j=0的吸引子,μ是支撑在K上的Hausdorff测度,最近,文[1]中讨论了自相似测度的柯西变换F(z)=∫K(z-w)-1dμ(w)在|z|>1内的罗朗系数。
Recently,the paper[1]have studied the Laurent coefficients of such transform F(z)=∫K(z-w)-1dμ(w) of Hausdorff measure in |z|>1.
假设{Sj}m-1j=0是由压缩映射Sj(z)=ε_j+ρ_j(z-εj),组成的迭代函数系(IFS),0<ρj<1,|εj|1,且至少有一个εj满足|εj|=1,K是{Sj}jm=-01的吸引子,μ是支撑在K上的Hausdorff测度,最近,文献[1]中讨论了自相似测度的柯西变换F(z)=∫K(z-w)-1dμ(w)在|z|>1在内的罗朗系数。
Using Laurent expansion to analyse the rational expression;
用罗朗展开分解有理分式
Identifying the Laurent expansion form of analytic functions;
解析函数罗朗展式形式的确定
This technique is based on the Laurent series expansion instead of the traditional Taylor series expansion.
提出一种新型的矩量匹配技术,不同于传统的基于泰勒级数的矩量匹配,该技术基于罗朗级数展开,考虑了负幂项的作用;通过灵活选择展开阶次,可以在指定区域内或外,非常有效地逼近所给函数。