In this paper, we study a kind of gereralized metric spaces- LF-netted spaces and PF-netted spaces.
本文主要研究了一类广义度量空间—LF-网空间,PF-网空间,给出了闭PF-网空间的刻画及几个强σ-空间的充分条件;引入了LF-数概念,得到了LF-网空间的几个性质,主要结果如下: 定理1。
The concepts of r remote neighborhood family and r- remote neighborhood family are defined by means of LF-r closed set in LF topological spaces.
在LF拓扑空间中借助LF-r闭集定义了r远域族与r-远域族,进一步引入r-Lindelff可数性和弱r-Lindelff可数性的概念,证明了r-Lindel可数性和弱r-Lindel可数性对于LF-r闭子集是遗传的,是r拓扑性质。
In this paper,new definition of regular spaces in LF topological spaces are given,some equivalent conditions and good properties of this regular space are proved,such as L-good extension,closed hereditary,each open(closed)set is θ-open(closed)set and so on.
本文在LF拓扑空间 (LX,δ)中给出正则空间的另一种定义 ,证明了这种正则空间具有一些好的性质与等价条件 ,如L -好的推广 ,闭遗传 ,每个开 (闭 )集是θ -开 (闭 )集等。
The Comparison of T_2 and Weak T_2 Separation Property on LF-topology Space;
LF拓扑空间的T_2与弱T_2分离性比较
Discuss of "L-good Generalization" Properties of LF Topological Spaces Generated by a Crisp Topology;
关于可拓扑生成LF拓扑空间“L-好的推广”性质的讨论
Quasi-Lindel-f Properties in LF-Topological Spaces;
LF-拓扑空间的拟Lindelf性
Study on Some Properties of LF-closure Spaces;
LF闭包空间中某些拓扑性质的研究
locally convex linear topological space
局部凸线性拓扑空间
locally arcwise connected topological space
局部弧连通拓扑空间
A topologic space or surface.
簇拓扑学的空间或面
metrizable topological space
可度量化的拓扑空间
pseudometrizable topological space
伪可度量化拓扑空间
THE TИXOHOB THEOREM OF GENERALIZED TOPOLOGICAL SPACES
广义拓扑空间的ТИХОНОВ定理
Infinite-Dimensional Topology in Hilbert Space;
Hilbert空间上的无穷维拓扑
The Research of Fuzzifying Semi-open Topological Theory;
Fuzzifying半拓扑空间的研究
γ-Sets in L-Fuzzy Topology Spaces;
L-Fuzzy拓扑空间中的γ-集
Fuzzy Topological Spaces and Bitopological Spaces
不分明拓扑空间与双拓扑空间的正规性
Sub-separation Axioms in L-topological Spaces and I-fuzzy Topological Spaces;
L-拓扑空间和I-fuzzy拓扑空间的次分离公理
Fibrewise Gluing Topology Space and Fibrewise Paste Topology Space
纤维粘合拓扑空间与纤维粘贴拓扑空间
This lattice is a Semi-topological invariant.
这个格是拓扑空间的一个半拓扑不变量。
Locally Separable Metric Spaces and Weaker Metric Topology Spaces;
局部可分度量空间与弱度量拓扑空间