At last, we calculate the radiation pattern with the saddle-point method.
采用矩量法结合复镜像理论计算了近地水平对数周期天线的阻抗矩阵,利用微波网络理论处理馈源问题,从而得到天线的电流分布,最后采用鞍点法计算了远区辐射场。
The center-weak focus of a general system of degree “n” was transformed into a problem of generalized center-weak saddle.
将一般n次中心—细焦点系统,转化为广义中心—细鞍点系统。
A problem of center-weak focus system of degree n(n denotes odd numbers) in qualitative theory of differential equation is transformed into the problem of generalized center-weak saddle system by a generalized transformation of generalized polar coordinates,which offers the calculation formula of eleven-order weak saddle values.
采用广义极坐标变换,将微分方程定性理论中的齐n次(n为奇数)中心———细焦点系统,转化为广义中心———细鞍点系统,给出了该系统的第11阶细鞍点量计算公式。
We discuss the types of the equilibrium points,Hopf bifurcation,saddle separate relation place.
讨论平衡点的类型,Hopf分支问题,鞍点分界线的相对位置,极限环的存在性。
Incomplete Lagrange function and saddle point optimality criteria fora class of nondifferentiable generalized fractional programming;
一类非可微广义分式规划的非完全Lagrange函数与鞍点最优性准则
Existence of the saddle points under the weak continuity;
弱连续条件下鞍点的存在性
It will present consistency of saddle point with Nash equilibrium,and prove the corresponding theorems.
讨论了二人常和博弈中的占优策略、最优策略与稳妥策略的关系,比较最小最大原理和最大最小法分别选取的支付大小,通过例子说明稳妥策略组合不一定是纳什均衡;提出鞍点与纳什均衡的一致性,并证明了相应的定理。
During the definition of new saddle point,x0∈V is not needed,so the new saddle-point optimality condition is obtained in this paper.
2003年,Sach引进了一种新的鞍点,在新鞍点定义中,不需要x0∈V,为此,本文最后得到了新鞍点的最优性条件。
The saddle-point type optimality criteria are also proven by using the existing necessary conditions under the assumption of the class of(F,α,ρ,d)-convexity.
对于一类目标函数中有无限个分式的广义分式规划,给出了两个不完全Lagrange函数,并利用已有的最优性必要条件,在(F,α,ρ,d)-凸性的条件下,证明了鞍点最优性准则。
For a class of generalized fractional programming whose objective function is composed of infinite fractions,the saddle-point type optimality criteria are proven by using the existing necessary conditions,under the assumption of the class of B-(p,r)-invexity.
对于一类目标函数中有无限个分式的广义分式规划,给出一个不完全Lagrange函数,并利用已有的最优性必要条件,在B-(p,r)-不变凸性的条件下,证明了鞍点最优性准则。
In the framework of locally convex topological vector space,the scalarization theorem,Kuhn-Tucker conditions as well as the duality theorem and the saddle points theorem on Henig proper efficient solutions with respect to the base for vector optimization involving arcwise connected convex maps are established separately.
在局部凸拓扑向量空间中,建立了弧连通凸映射向量优化问题关于基的Henig真有效解的标量化定理、Kuhn-Tucker条件、对偶性定理以及鞍点定理。
We establish a Lagrange multiplier theorem for strict efficiency in convex settings and express strict points as saddle points of an appropriate Lagrangian function.
讨论凸多目标最优化问题的严有效解,建立了拉格朗日乘子定理,并把严有效解表示为一个适当的拉格朗日函数的鞍
Research on saddlepoint programming and geometric error evaluation;
鞍点规划与形位误差评定理论的研究
The Conjugate Lagrangian Function and Its Saddlepoint of a Programming in a Banach Space;
Banach空间中的一个共轭拉格朗日函数及其鞍点