In this paper,we obtain equivalent properties of some nearly open sets,such as regularly open sets,pre-open sets,semi-preopen sets,β-open sets,semi-regularly semi-open sets and regularly semi-open sets,utilizing some defined operators of interior and closure.
利用拓扑空间中的内部、闭包、半内部、半闭包等算子,给出了正则开集、准开集、半准开集、β开集、半正则半开集、正则半开集等一些近似开集的等价性质。
With the help of the strongly semi-preclosed sets, the concept of Ⅱ type of connectivity in L-topological spaces is intruced.
利用强半准闭集引入了L-拓扑空间中的Ⅱ型强连通性概念,它保持了一般拓扑空间连通集的若干重要性质。
In this paper,strongly semi-preopen sets,strongly semi-preclosed sets,strong semi-preclosure,strong semi-preinterior and strong semi-precontinuity in topological spaces are introduced,their properties are studied,and Kuratowski’s fourteen sets theorem is given.
引进了拓扑空间中强半准开集、强半准闭集、强半准闭包算子、强半准内部算子、强半准连续等概念,讨论了它们的性质,给出了Kuratowski十四集定理的推广形式,建立了强半准连续与已有的相关概念之间的联系。
In this paper,strongly semi-preopen sets,strongly semi-preclosed sets,strong semi-preclosure,strong semi-preinterior and strong semi-precontinuity in topological spaces are introduced,their properties are studied,and Kuratowski’s fourteen sets theorem is given.
引进了拓扑空间中强半准开集、强半准闭集、强半准闭包算子、强半准内部算子、强半准连续等概念,讨论了它们的性质,给出了Kuratowski十四集定理的推广形式,建立了强半准连续与已有的相关概念之间的联系。
In this paper,strongly semi-preopen sets,strongly semi-preclosed sets,strong semi-preclosure,strong semi-preinterior and strong semi-precontinuity in topological spaces are introduced,their properties are studied,and Kuratowski’s fourteen sets theorem is given.
引进了拓扑空间中强半准开集、强半准闭集、强半准闭包算子、强半准内部算子、强半准连续等概念,讨论了它们的性质,给出了Kuratowski十四集定理的推广形式,建立了强半准连续与已有的相关概念之间的联系。