A new Jacobi identity is proved by the residue theorem.
运用留数定理证明了一类雅可比恒等式,并求得了一些Theta函数的恒等式。
A q analogous Jacobi identity is constructed by means of q parametrization of the bases of the Lie algebra g=SL(2,C).
本文通过对李代数g=SL(2,C)的基底(basis)的q参数化,构造了一种q类似的雅可比恒等式,进一步获得了对应的量子A(1)1Kac-Moody代