The characteristic expression of multi-value function by using Riemann surfaces is discussed,and the mapping from s-plane into w-plane is also analyzed.
本文通过分析多值函数特性在黎曼平面中的表达以及s-平面与w-平面的映射关系,给出了分数阶线性定常系统极点分布与时域响应的定性关系。
The distance length and kinetic energy of 2-dof manipulator are regarded as Riemannian metrics respectively by modern differential geometry, and they determine the corresponding Riemannian surfaces, which represent the global manipulability of manipulator s kinematics and dynamics.
对黎曼曲面上的测地线和黎曼曲率进行了定量分析 ,利用曲面上的测地线和黎曼曲率的几何性质 ,提出基于测地线的最优轨迹规划方法和基于黎曼曲率的工作空间优化方法 ,并以平面 2 R机器人为例进行了实例计算。
(M,g) is assumed to be a Riemannian surface, the paper stated here firstly defines the φ- Dirichlet integral of the functions on M, then reaches the main theorem about the bounded property of the φ-subharmonic functions on M with finite φ-Dirichlet integral.
(M,g)是黎曼曲面,该文给出了M上函数的φ-Dirichlet积分的定义,并在此基础上 得到了一个关于具有有限的φ-Dirichlet积分的φ-次调和函数的有界性定理。
HCMU metric is a special kind of extremal metric on Riemannian surface with global rotational symmetric.
HCMU度量是黎曼曲面上极值度量的一个退化情形,具有整体旋转对称性。
Moreover, the duality relation of energymomentum tensor on high genus Riemann surface is derived.
考察了一个在引力场gμv和dilaton场背景下的有限温度玻色弦模型,导出了高亏格黎曼面上能量动量张量满足的对偶关系式;同时,还在四维Robertson-Walker(R-W)度规下证明了弦气体物质作用量的温度对偶不变性,获得了亏格数g=1和2的弦宇宙学解,并研究了运动方程的温度变换性质。
branch data,this paper gives a sufficient and necessary condition of them to be realized as the branch data of some branched coverings over the Riemann sphere.
对一类抽象分歧数据 ,给出一个充分必要条件 ,使得它们能够实现为黎曼球面上分歧覆盖的分歧数
The Significance of Elementary Poly-Valued Complex Functions on Riemann Sunface
初等多值复函数在黎曼曲面上的意义
Compact Hyper-surface with Constant Mean Curvature in Locally Symmetric Manifold;
局部对称黎曼流形中的常平均曲率紧致超曲面
Hynersurface with Constant Sclar Currature in QC Riemannian Manifold;
常QC黎曼流形中具有常数量曲率的超曲面
On Pinching Theorem of Sectional Curvature on a Hypersurface with Constant Mean Curvature in Locally Symmetric Quasi-constant Curvature Space;
局部对称拟常黎曼流形中常平均曲率超曲面的截面曲率的Pinching定理
Harmonic Maps with Potential and Hyper-surface in the Ricci Symmetric Riemannian Manifold
带有位势的调和映射和对称黎曼流形的超曲面
Rigidity Theorems for Some Hypersurfaces in a Locally Symmetric Manifold
局部对称黎曼流形中某类超曲面的刚性定理
Campact Hypersurfaces with Constant Mean Curvature in Riemannian Manifolds with Parallel Ricci Curvature
Ricci曲率平行的黎曼流形中具有常平均曲率的紧致超曲面
Complete Hypersurfaces with Constant Mean Curvature in Locally Symmetric Manifold;
局部对称黎曼流形中具常平均曲率的完备超曲面
On the Curvature、Topology and M(?)bius Characterization of Riemannian Manifold;
黎曼流形的曲率、拓扑与M(?)bius特性研究
Douglas Metrics with Some Non-Riemannian Curvature Properties
具有某些非黎曼曲率性质的Douglas度量
The 2- harmonic Submanifold in Quasi- constant Curvature Riemann Manifold
拟常曲率黎曼流形中的2-调和子流形
The Parallelism of the Rays in a Complete Riemannian Manifold with Nonnegative Curvature
非负曲率的完备黎曼流形上的平行射线
Curvature Estimates for Symmetric Spaces with Applications;
不可约黎曼对称空间的曲率估计及其应用
(α,β)-Metrics of Certain Important Non-Riemann Curvature Properties;
具有某些重要非黎曼曲率性质的(α,β)-度量
On the Space-Like Submanifolds with Constant Mean Curvature in a Pseudo-Riemannian Space Form;
伪黎曼空间型中具有常平均曲率的类空子流形
On 2-Harmonic Submanifolds of a Riemann Manifold;
黎曼流形上具有平行平均曲率的2-调和子流形
The compact pseudo-umbilical submanifold with parallel mean curvature vector in the Riemannian manifold with constant curvature
常曲率黎曼流形中具有平行中曲率向量的紧致伪脐子流形
On submanifolds with parallel mean curvature in a locally symmetric quasi-constant curvature Riemannian manifold
局部对称拟常曲率黎曼流形中具有平行平均曲率向量的子流形