In the end,it discusses a class of holomorphic invariant and invariant harmonic function.
运用折叠原理和膨胀原理,先得到了Cm+n中Re inhardt域D(a,b,K;m,n)的Bergm an核函数,它是C2中Re-inhardt域D1(1,b,K;1,1)的一种推广,然后,又给出了它的Bergm an度量和全纯自同构群的显式表示,在最后,还讨论了它的一类全纯不变量及在全纯自同构群下不变的调和函数。
In this paper, we discuss about the biholomorphic invariant J Y I (w,z;,) on Super\|Cartan domain of the first type and the limit of J Y I by making point (w,z) sufficiently close to Y I.
本文讨论了第一类超 Cartan域 YI上的双全纯不变量 JY1(w,z;w,z)以及当 (w,z)趋于边界 YI时JYI的极
Solving robust controller of pure unstable process usingmirror-injection method;
用镜像映射方法求纯不稳定过程的鲁棒控制器
By means of holomorphic automorphic map to compute the determinant of Bergman metic matrix detT for domains Y_(II),which are Cartan-Hartogs domains of the second type,in explicit formulas and the biholomorphic invariant J_(Y_(II)) for the domains Y_(II) are obtained.
利用全纯自同构映射,求出了第二类Cartan-Hartogs域YII上Bergman度量矩阵行列式detT(W,Z;W,Z)的显表达式,从而得到YII上的双全纯不变量JYII。
In this paper we obtain the biholomorphic invariant J Y Ⅲ concerning Bergman Kernel function on Cartan-Hartogs domain of the third type and discuss the limit of J Y Ⅲ when points (W,Z)→(W 0,Z 0)∈Y Ⅲ.
研究了第三类Cartan Hartogs域YⅢ 上一类与Bergman核函数有关的双全纯不变量JYⅢ ,以及当点 (W ,Z)趋于边界YⅢ 时JYⅢ 的极限 。
As an aplication,the formulas are used to research the boundary bdehavior for biholomorphic invariant J Y Ⅳ ,which is with respect to the Bergman kernel.
作为应用又研究了一类与 Bergman核函数有关的双全纯不变量 JY 的边界性质 。