,we know that a curve lies in a plane if its position vector lies in its osculating plane at each point, and lies on a sphere if its position vector lies in its normal plane at each point;In this paper,we mainly discuss the rectifying curves in three dimensional Minkowski space.
本文给出了三维M inkowsk i空间中一种新类型的曲线———从切曲线,它的位置向量总是位于它的从切[平]面上。
The family of rectifying planes.
而从切面族和法面族在任何点处不会出现无穷小稳定。
The main purpose of this thesis is to investigate the quasi-rectifying curves inMinkowski space, classify the limit points of complex hyperbolic isometry groupsand compare with the case in real hyperbolic spaceand and discuss the monotonic-ity and logarithmic convexity of a function involving the gamma function.
本文主要研究了Minkowski空间中的拟从切曲线,对复双曲等距群的极限点进行分类,同时与实双曲空间进行了比较,且讨论了有关伽玛函数的单调性与对数凹凸性。
The rectifying developable of a nonlightlike space curve in Minkowski 3-space;
三维Minkowski空间中非类光曲线的从切可展曲面的奇点分类
In this paper, We give the singularities of rectifying developable in Minkowski 3-space.
本文给出了三维Minkowski空间中非类光曲线的从切可展曲面的奇点分类。