Two different equivalence relations on the set of n-potent orthogonal matrices are obtained by the definitions of orthogonality and algebraic equivalence about n-potent matrices.
由n次幂等矩阵正交与代数等价的定义,得到了n次幂等正交矩阵集中2种不同形式的等价关系。
We prove algebraic equivalence and similarity are equivalence relations on Pkn(R)= {P | Pn = P ∈ M k(R)} for all k≥ 1 and show that algebraic equivalence is necessary but not sufficient for similarity.
本文证明了n次幂等矩阵集Pkn(R)={P|Pn=P∈M k(R)}上的代数等价与相似都是其中的等价关系,并阐明代数等价是相似的必要非充分条件。
Devotes to consider three new types of equivalence relation of projective operators: algebraic equivalence,similarity and homotopy.
引入了投影算子的三种等价关系:代数等价、相似和同伦,并讨论了它们之间的强弱关系以及在Hilbert空间上这三种关系的一些新结论,说明了在有限维的Banach空间和H。
A primal-dual interior point algorithm based on algebraically equivalent path for linearly constrained convex programming problem which satisfies scaled Lipschitz condition is presented;and its computational complexity is discussed.
对于满足尺度李谱希茨条件的一类线性约束凸规划问题,提出了一种基于代数等价路径的原始-对偶内点算法,并讨论了计算复杂性。