The paper studies the asymptotic behavior of "interior point" on the second mean value theorem for integrals when the length of integral interval tends to be infinite,and the asymptotic estimation formulas under very weak conditions are given.
讨论当积分区间长度趋于无穷大时,积分第二中值定理的“中间点”的渐近性态,在较弱的条件下,获得积分第二中值定理的“中间点”当积分区间长度趋于无穷大时的渐近估计式。
So far, there are NO any articles about the second mean value theorem for integrals.
给出了在各种情况下积分第二中值定理“中间点”的渐近性的几个结论 ,相信在积分学中有着很重要的作用 。
In this paper, the asymptotic properties of ξ in the second mean value theorem for integralshas been considered, and the main result we have obtained is
本文研究了积分第二中值定理中ξ的渐近性质,得到主要结果
In this paper,second mean value theorem for integrals is studied,and some results of the inverse problem of the theorem are obtained.
对积分第二中值定理作了进一步的研究,得到了积分第二中值定理的逆问题及其逆问题的渐进性。
By using the limit theorem,the authors discuss and prove conclusions of asymptotic property of mean point in second mean value theorem for integrals in concessional terms believing that they will take an important effect in integral.
利用极限理论,给出并证明了减弱条件的积分第二中值定理“中值点”的渐近性的几个结论,相信在积分学中有着很重要的作用。
This paper intends to discuss and prove the asymptotic behaviour of mean point in second mean value theorem for integrals in concessional terms.
给出并证明了减弱条件的积分第二中值定理"中值点"的渐近性。
When 1) D αf(a)≠0;2) f (i) +(a)=0 (i=1,2,…,n-1), D αf (n-1) (a)≠0, the asymptotic state of mean value of second mean value theorem for integral are respectively studied,their varying trend has been studied,these results are then applied to approximate integration.
分别在Dαf(a)≠0和f(i)+(a)=0(i=1,2,…,n-1),Dαf(n-1)(a)≠0的情况下,研究了积分第二中值定理中ξ的变化趋势,并把所得结果应用于近似求积。
Relationship between abnormal fetal heart rate tracing patterns during the second steage of labor and perinatal outcome;
第二产程异常胎心监护图形与新生儿结局的关系