It is difficult for students to grasp proofs of thedivergence in mathematical analysis.
调和级数是级数理论中一种比较重要的发散级数,现行《数学分析》教材中,有关它的发散[性]证明学生在学习中不易掌握。
Its application provides four proofs for the divergence of Harmonic Series.
调和级数的发散及其应用给出了调和级数发散[性]的4种证明;并分别在比较审敛法和极限比较判别法中,举例说明调和级数在判断无穷级数的敛散性时的标尺作用。
Making use of them,we can determine the divergence of some infinite integral.
给出了无穷积分收敛的必要条件,从而可运用必要条件判定某些无穷积分的发散[性]以及进行有关的证明。
This article expounds how to train the students ability of divergency, adaptability, movability, criticism and creation in physics exercise lessons, in order to get the students to bring forth new ideas.
文章阐述如何在物理习题课教学中训练学生思维的发散[性]、变通性、迁移性、批判性和独创性 ,培养学生的创新思维能力。
Tips on the divergent thinking in deviated rhetoric;
试论变异修辞中的发散[性]思维
On Training for Divergent Thinkingin Teaching of Reading and Writing in Chinese;
浅论语文读写教学中的发散[性]思维的培养
In the process of conceiving designs,divergent thinking makes the conception smooth and flexible; while convergent thinking makes it well orientated.
在设计构思环节中 ,发散[性]思维能使设计思路流畅、灵活 ;收敛性思维能使构思有准确的定位 ;直觉思维能加速认识事物的本质和规律性 ,产生设计灵感 ;通过想象能使设计摆脱现状 ,实现超越 ,得到最新意境的浮现和展
The emanative thinking is one of the rational thinking.
数学是一种理性的思维,这种理性思维包括多种形式,其中之一就是发散[性]思维,它又称为求异思维,它是一种重要的创造性思维。
Ways and means of how to cultivate high school students’ qualities of emanative thinking and creative thinking in chemistry teachings were discussed through in-class teaching examples.
结合课堂教学实例,阐述了在中学化学教学中如何培养学生发散[性]思维和创造性思维品质的方法。
The related study has gone through three stages from expressive demonstration,self-conscious development,to the divergent study guided by multi-theories.
西方汉学基于不同的文化视野和问题意识,多维度地介入中国现代文学的生态结构,相关研究大致经历了初期在域外视野下对文学生态有意味的呈现,文化研究的自觉意识影响的研究热,及多种理论向度指引下的发散[性]研究的三个阶段,从丰富变化的角度呈现出现代文学层次繁杂、视景交叠的生态景观。