The construction and convergence of the Ishikawa iterative sequence for quasi-nonexpansive operator with boundary condition are studied in uniformly convex Banach spaces.
在一致凸Banach空间中,研究了带边界条件的拟非扩张算子的Ishkawa迭代序列的构造和收敛问题,推广和改进了已有的相应结果。
Hailin has been introduced the fixed point theorem for a class of pseudo-nonexpansive operators under certain conditions.
已有文献介绍了Banach空间中一类非线性拟非扩张算子的不动点存在定理,但未给出不动点的构造。
This paper discusses the existence of the fixed points of a class of nonlinear pseudo-nonexpansive operators-M-pseudo-nonexpansive operators,then it asserts the fixed point theorem for this type of operator under certain conditions, which extends B.
讨论了一类非线性拟非扩张算子———M型拟非扩张算子的不动点的存在性,给出了这类算子在满足一定条件下的不动点定理,该定理推广了B。
In this paper we define the concept of order non-expansive operator,and investigate the fixed point existence problem,obtained some fixed point theorems.
引入了序非扩张算子的概念,并研究了这种算子不动点的存在问题,得到了几个不动点定理。
In chapter two, we define the concept of order non-expansive operator, and investigate the fixed-point existence problem, obtained some fixed-point theorems.
第一章我们介绍了一些文中用到最基本的定义和引理,第二章引入序非扩张算子的概念,并研究了这种算子不动点的存在问题,得到了几个新的不动点定理。