Dissipativity and asymptotics of the nonlinear parabolic equations;
非线性抛物[型]方程的耗散性和渐近性
The existence,uniqueness and comparison principle of periodic solutions of boundary problem for nonlinear parabolic equations: u(u)t=f(u x)x (x,t)∈(0,1)〗R u(0,t)=g 0(t),u(1,t)=g 1(t),t∈R is proved by constructive method.
利用构造性方法证明了非线性抛物[型]方程边值问题a(u)t=f(ux)x,(x,t)∈(0,1)×R,u(0,t)=g0(t),u(1,t)=g1(t),t∈R的周期解的存在性,同时证明了周期解的比较原理和唯一性定
A class of inverse problems for nonlinear parabolic equations is discussed by the variational adjoint method,which is firstly proposed in optimization control for partial differential equations.
利用偏微分方程最优控制中的伴随方法研究一类非线性抛物[型]方程逆时反问题。
A finite difference method with accuracies of fourth order in space and second order in time is proposed for time-periodic solutions of a nonlinear parabolic boundary value problem.
建立了一个用于求解非线性抛物[型]方程时间周期解的有限差分方法,在空间和时间方向上该方法分别具有四阶和两阶精度。
Wavelet Galerkin approximation of nonlinear parabolic equation;
非线性抛物[型]方程小波Galerkin逼近
The error estimation on large time for a class of nonlinear parabolic equation;
一类非线性抛物[型]方程的长时间误差估计
Global existence of solutions for a class of nonlinear parabolic equations with dirichlet boundary conditions;
一个非线性抛物[型]方程的初边值问题解的整体存在性
Global existence and blow up for a nonlinear parabolic equations;
一类非线性抛物[型]方程组解的整体存在及爆破
A study is made on the blowing up problem for the nonlinear parabolic equations u t=Δu m,v t=Δv m, m≥1,with nonlinear boundary conditions u n=u p·v q, v n=u r·v s.
研究了带非线性边界条件 u n =up·vq, u n=ur·vs的非线性抛物[型]方程组ut =Δum,vt =Δvm(m ≥1)时的爆破问题 。
This paper deals with the existence and nonexistence of global positive solution of nonlinear parabolic equations with nonlinear boundary conditions.
考虑一类带非线性边界条件的非线性抛物[型]方程组的整体存在性和爆破问题。
Based on triangular meshes, we present a finite volume element framework for a class of two dimensional nonlinear parabolic systems.
讨论基于三角形网格的二维非线性抛物[型]方程组的有限体积元方法,其中试探函数空间为二次Lagrange元,检验函数空间为分片常数函数空间,对问题的全离散格式证明了最优的能量模误差估计。
The initial regular oblique derivative problem for nonlinear parabolic systems of several second order complex equations with measurable coefficients in a multiply connected domain is discussed.
论述了多连通区域上可测系数的二阶非线性抛物[型]方程组的初-正则斜微商问题。
Lions has proved the existence and uniqueness of global solutions to the initial-boundary value problem for a class of nonlinear degenerate parabolic equation by mean of compactness principle,but the decay property is considered by few people.
L ions用紧致性方法证明了一类退化非线性抛物[型]方程初边值问题整体解的存在唯一性,但解的衰减性很少有人考虑。
Galerkin alternating-direction procedures are considered for the nonlinear parabolic systems q i(ξ,u)u it-∑kj=1·(a~ ij (ξ,u)u j)+∑kj=1 b~ → ij (ξ,u)·u j=f i(ξ,t,u),1≤i≤k.
利用等参变换、在局部有限单元上近似Jacobi行列式p(x)及系数qi(ξ,u),1≤i≤k等方法,对非矩形区域上非线性抛物[型]方程组qi(ξ,u)uit-∑kj=1·(a~ij(ξ,u)uj)+∑kj=1b~→ij(ξ,u)·uj=fi(ξ,t,u),1≤i≤k,提出了一类方向交替Galerkin格式,并得到最优的L2-和H1-误差估计。