This paper applies the p-adic valuations of the coefficients of universal divided Bernoulli number ■n /n when n is divisible by p-1,and gives a simple proof of the congruence of universal Bernoulli number ■n/n.
文章运用p-adic赋值理论给出了泛可除Bernoulli数■n/n的系数τu的p-adic赋值的界,从而证明了泛von Staudt定理中一个同余式的简化证明。
This paper applies the p-adic valuations theory of the coefficients of the universal divided Bernoulli numbers B∧n/n when n is divisible by p-1,and obtains a simplified proof congruences in universal von Staudt theorem.
运用p-adic赋值理论给出了泛可除Bernoulli数∧Bn/n的系数τu的p-adic赋值的界,从而给出了泛von Staudt定理中部分同余式的简化证明。
The appearance of literature-criticizing fu relates to the developing of the style-criticizing,but fu-criticizing fu connects much with the imperial examination system,in which fu-writing plays an important role.
考察论文赋的创生,与文体论的发展相关,而其中论赋赋的创作,则是围绕着科举考赋制度而出现的。