Seven proving methods for Cauchy Inequality are introduced in this paper,including: method of completing square,constructing quadratic trinomial,the positive definiteness of binary binomial,Lagrange identical equation,mathematical induction and arithmetic mean-geometric mean inequality.
利用配方法、构造二次三项式、二元二次型的正定性、拉格朗日恒等式、行列式性质、数学归纳法以及算术平均-几何平均不等式等7种方法给出了柯西不等式的7种证法。
Now the Vogel is employed to solve such problemswith optimized plan and with reduced iteration.
可将此类问题转化为运输问题的目标函数,用最小元素法的表上作业法对其进行求解,但需经过5次迭代,现采用沃格尔法求解此类问题可以减少求最优解的迭代步骤,并可求得最优方案。