In this paper, the classifications of boundary conditions of the self-adjoint differential operators and it s canonical form are studied.
本文主要研究自共轭微分算子边界条件的分类及其标准型。
The Classifications of Boundary Condition of the Self-Adjoint Differential Operators and Its Canonical Form;
自共轭微分算子边界条件的分类及其标准型
On the Self-Adjointness of Product of Two Odd-Order Differential Operators
两个奇数阶微分算子乘积的自共轭性
Characterization of Domains of Self-Adjoint Ordinary Differential Operators and Spectral Analysis
微分算子的自共轭域和谱分析——微分算子研究在内蒙古大学三十年
The Self-Adjoint Boundary Conditions and Inequalities among Eigenvalues of Differential Operators;
微分算子自共轭边界条件与特征值不等式
conjugated molecule and unconjugated molecule
共轭分子和非共轭分子
The Symplectic Geometry Characterization of Seif-Adjoint Domains of Symmetric Differential Operators in Direct Sum Spaces;
直和空间上对称微分算子自共轭域的辛几何刻划
The Symplectic Geometry Description of the Self-Adjoint Domains of Differential Operators on Infinite Interval;
无穷区间上奇型微分算子自共轭域的辛几何刻画
Symplectic Geometry Characterization of Self-Adjoint Domains for Symmetric Differential Operators in Direct Sum Spaces(Ⅱ)
直和空间上对称微分算子自共轭域的辛几何刻画(Ⅱ)
The Luminescence of Organic Conjugated Molecules in High Polymer Disperser Systems;
高分子分散系中有机共轭分子的发光
Generalized Harmonic Conjugation Operator and Universal Teichmüller Space;
广义调和共轭算子和万有Teichmüller空间
Study on Acoustic Echo Cancellation Adaptive Algorithm Based on Subband Decomposition and Conjugate Gradient Method
基于子带分解的共轭梯度自适应回声抵消算法研究
Chaotic particle swarm optimization algorithm based on nonlinear conjugate gradient algorithm
基于非线性共轭梯度法的混沌微粒群优化算法
Conjugated polymers: Synthesis and electro-optical property investigation.
共轭高分子的合成及光电性能研究。
STUDIES ON CONJUGATED POLYMERS Ⅶ. Polymerization of Aliphatic Nitriles
共轭高分子的研究——Ⅶ.脂肪腈类的聚合
The Randi(?) Index of Acyclic Conjugate Molecular Graphs;
无圈共轭分子图的Randi(?)指标
Theoretical Studies on the Conducting Macromolecule with σ-π Conjugated System
σ-π共轭体系导电高分子的理论研究
Error Estimate to the Simplified Iteration for the PositiveSemi-Definite,Compact and Self-Adjoint Operator Equation
自共轭半正定紧算子方程简化迭代的误差估计
A partition that is its own conjugate is ealled self-conjugate.
一个分析如与其自身共轭,称为自共轭。