Prime Dual Ideals of Lattice Implication Algebra;
格蕴涵代数的素对偶理想
A theorem on dual ideals in BCK-algebras;
关于 BCK-代数中对偶理想的一个定理(英文)
This paper is to prove the condition of equivalence on BCK -Algebras’ dual ideal.
分别对BCK-代数对偶理想的充要条件和有界关联BCK-代数关于对偶理想的商代数进行了研究。
In a BCI-algebra, a congruence relation is defined by using its intrinsic ideal, thus the intrinsic quotient algebra of the BCI -algebra is obtained.
利用BCI-代数的固有理想这一概念 ,在BCI-代数中定义了一个同余关系 ,从而得到这个BCI-代数的固有商代
In this paper,we introduce the intrinsic ideal of BCI-algebra,and give some results about it.
引入了BCI—代数的固有理想这一概念,并对其进行了一些探讨。
Prime Dual Ideals of Lattice Implication Algebra;
格蕴涵代数的素对偶理想
This paper study on ideal of the power lattice on a lattice,and established relation between ideal(dual ideal 、prime ideal、prime dual ideal) of lattice and ideal(dual ideal 、prime ideal、prime dual ideal) of the power lattice on the lattice.
研究了格上幂格的理想,建立了格的理想(对偶理想、素理想、素对偶理想)与格上幂格的理想(对偶理想、素理想、素对偶理想)的联系。