The largescale periodic orbits of the system can represent the homology classes,which are generally nontrivial,on the equi-energy level surface and the topological properties of the equi-energy level surface are determined by that of the phase space and the largescale properties of Hamiltonian function.
Hamilton系统的相轨道位于正则值所确定的等能曲面上,而系统的大范围周期轨道可以代表等能曲面的同调类,这些同调类一般非平凡。
A result of Seiberg\|Witten theory is used to give a condition for a given 2\|dimensional homology classes of CP\+#n\{CP\+2\}(3≤n≤8) to be represented by a smoothly embedding 2\|tori.
运Seiberg Witten理论的结果 ,本文给出了四维流形CP2 #nCP2 (3≤n≤ 8)中的二维同调类可用光滑嵌入二维环面表示的一个条