It is proved that there are countable infinite discontinuous points in plane bounded closed region D, and these discontinuous points in D only have not many of accumulation points bounded functions which are also integrable functions on D.
对于多元函数可积函数类,进行了拓展性研究,论证了在平面有界闭区域D内有可数无限个不连续点,且这些不连续点在D内只有有限个聚点的有界函数也是D上的可积函数。
Through comparing the different topological structures in real number space the author,finds some relatives among many topological structures in real number space and draws related properties of accumulation point and limit point in different topological structures.
针对实数空间R中不同的拓扑结构,讨论实数空间R若干拓扑结构之间的关系,并讨论在不同的拓扑结构中,聚点、极限点等有关性质。
By changing the perturbution to strongly monotone VIP,basing on the equivalent D-gap function,a derivative-free algorithm is given,and each accumulation point obtained by this algorithm is a solution to the original VIP under suitable conditions.
利用广义的D-间隙函数提出一种无需计算函数梯度的算法,进一步证明此算法产生的每一聚点都是原变分不等式的解。
We investigate the asymptotic spectrum and accumulation of transport operator A in slab geometry with continuous energy, anisotropic scattering and inhomogeneous medium,under generalized boundary conditions.
研究非均匀介质、各向异性和连续能量的板模型迁移算子 A在广义边界条件下的的渐近点谱及其聚点 。
In Lp(1 ≤p <±∞) space we show the relative compactness of the operator K = A - B , obtain the new results of asymptotic point spectrum and accumulation of operator A .
研究非均匀介质、各向异性和连续能量的有界凸体迁移算子A的渐近点谱及其聚点。
By omitting certain particular conditions inconsistent with actualities, we can also obtain a similar result in the position distribution of discrete eigenvalues and their limit points for this kind of operators.
讨论了各向异性、能量相关、非均匀有界凸体介质中迁移算子的谱,在省略某些不符合实际的 特殊条件的情况下,对这类算子离散本征值及其聚点的位置分布,同样获得了一个类似的结果。
In the paper existence of pulse accumulation point for initial value problem of first-order impulsive differential equations with variable times was disscused.
针对一阶时变脉冲微分方程初值问题脉冲聚点的存在性问题,首先证明了比较原理见引理2和引理3,其次研究了解x(t)与某些曲面Sk相遇无限多次的情形,并在相对较弱的条件下建立了依赖状态的脉冲微分方程脉冲聚点存在的充分条件,得到的相应结论推广了已有结果。
A fast clustering algorithm based on grid and density condensation point;
一种基于网格和密度凝聚点的快速聚类算法