Extension and Application of Cauchy Theorem;
柯西定理的推广及其应用
Cauchy theorem is one important theorem of complex function and there are many reasoning methods demonstrated in the textbook.
柯西定理是复变函数论中的重要定理之一,教材中有多种证法,大多数是在附加导函数连续的条件下给出的,证明不够严密,为此,讨论了一种取消该附加条件后的证法,过程虽复杂,但证明严密、思路清晰。
Based on Cauchy theorem and Rolle theorem, applied structure assist function method has proved the fundamental theorem.
以柯西定理、罗尔定理为基础,应用构造辅助函数法对带有Lagrange余项的泰勒公式进行证明。