Left weakly 2-transitivity of lattice-ordered permutation groups;
格序置换群的左弱可迁性
In this paper,we give a infinitesimal generator concepts of simlicial and transitive transitive Lie transformation group G of the effect on the C∞ manifold M,obtain several useful and important results.
给出了作用在C∞流形M上的单纯可迁变换Lie群G的无穷小生成元的有关概念,得到了与之相关的若干重要代数性质。
In this paper, we research the n - transitive, which is an important definition in the lattice ordered permutation group.
利用格序置换群是研究格序群的重要工具之一,本文论述了在格序置换群里起重要作用的概念:n可迁性。
The present paper gives a discussion on the transitivity of the extended orthogonal groups on the sets of subspaces of the finite singular orthogonal geometries over finite fields of even order and constructs a symmetric association scheme by using the transitivity.
在F=GF(2~m)(m为自然数)上讨论了扩充正交群在向量空间的子空间集合上的可迁性及其产生的一类对称结合方案。
Sequence pseudoorbit tracing property is defined,and a sufficient condition on topological transitive is given.
给出序列伪轨跟踪性的定义 ,得到拓扑可迁的一个充分条件 。
In addition,it gives several equivalent propositions of topologically transitive in the sense of semigroup action.
引进了半群的拓扑强混合性和Devaney混沌,证明了在半群S连续作用的紧致度量空间X中,半群S的拓扑强混合性蕴含半群S作用是Devaney混沌的,同时给出了半群S作用的拓扑可迁的几个等价命题。