The relations between the Lusin theorem and the natural disposition theorem of the Lebesgue measurable functions are discussed in this paper,according to the almost every point of the n-dimension Lebesgue measurable set being the entire dense spot and the Lusin theorem.
讨论鲁金定理与勒贝格可测函数的本性定理之间的关系,利用n-维勒贝格可测集几乎所有的点都是全密点与鲁金定理的结论证明勒贝格可测函数的本性定理,利用勒贝格可测函数的本性定理证明鲁金定理。
Condilions os the theorvm changed,We have got Theorem 3 by usingLebesgue Measure.
积分学基本公式是计算定积分的一个重要公式,但它的使用条件较为苛刻,本文利用勒贝格测度,将定理的条件进行了改进,得到了定理3,并说明了定理3已不能再推广。
Lebesgue measure is introduced in knowledge base, knowledge measure and knowledge measurable sets are defined.
在知识库中引入勒贝格测度 ,定义了知识测度和知识可测 ,对比勒贝格测度研究了知识测度的性质 ,并得出了波雷耳集与知识可测集等价等强于勒贝格测度的性质 。
This paper shows that the Lebesgue measure of the singular matrices in R\+\{n×n\} is zero.
证明了 n阶实矩阵集合中奇异矩阵集合的勒贝格测度等于零 ,n维实空间中 m(≤ n)个随机向量线性无关的概率为