The properties of the attractor for a finite family of bi-Lipschitz and \$C~(1+α)\$ contractive maps on R are discussed.
讨论R上一双李普希茨,C1+α映射有限族的不变集(吸引子)的性质。
In this paper, we derive the existence and the uniqueness theorem for the mild solution of nonlinear stochastic differential equations dX=[AX+f(X)]dt+[BX+g(X)]dW in infinite dimensions under non-Lipschitzian condition by investigating the convergence of the successive approximation.
通过构造收敛的逼近列的方法给出了非李普希茨条件下无穷维随机微分方程dX=[AX+f(X)]dt+[BX+g(X)]dW的适度解的存在唯一性定理。
Let M,V,Q be Lipschitz manifolds, M be a locally flat and compact submanifold of V, V be an open manifold and dim V =dim Q.
设M ,V ,Q是李普希茨流形 ,M是V的局部LIP平坦的紧子流形 ,V是开流形且dimV =dimQ 。
The categories and the inductive limit of Lipschitz function s families;
李普希茨函数族的纲与诱导极限(英文)