The definition of truth degree in the classic two-valued proposition logic formula is populared to the uneven probability space whose power is 2,and two-valued logic(p,q) measure and its proposition probability truth degree are defined.
将经典二值命题逻辑中公式的真度概念推广到势为2的概率空间上,定义了二值逻辑(p,q)测度和其上命题的概率真度;在〔1/3,2/3〕的情形下证明了全体公式的概率真度之集在[0,1]中是稠密的,并给出了公式概率真度的表达通式。
Aiming at the problem that there exists very complicated and a large amount of component constraints,an algorithm of component constraint detection based on proposition logic was proposed,in which the proposition in daily diction was transformed into the formal proposition of mathematical logic via the process of proposition symbolization,i.
针对组件约束数量大、复杂度高的问题,提出了一种基于命题逻辑的组件约束检测算法。
In the viewpoint of proposition logic and based on extension theory,a new method for proposition representation is proposed.
从命题逻辑的角度 ,以可拓论为基础 ,建立了命题表示的一种新方法 ,提出了物元命题、事元命题和事物元命题的概念 ;指出物元命题与关于对象的陈述型命题相对应 ,事元命题和事物元命题与关于行为、事件的行为型命题相对应 ;探讨了命题的可拓性和可拓变换方法 ;给出了基于可拓集合的命题可拓集的概念 。
The highest level logic,or rather,the second level logic deals with logical connection proposition which is the highest grade proposition.
同时互逆主义逻辑的多层逻辑思想揭示了各类命题之间的内在关系,最高层即二层逻辑主要用于处理最高级别的逻辑命题,这是经典逻辑所不具备的功能。
In other words, the logical connection proposition is composed of empirical mathematical connection propositions and the connective.
命题又可分为不同的层次,高层命题由低层命题构成,即逻辑命题由经数命题加联符构成,经数命题由事实命题加联符构成,事实命题由项构成。
The Generalized Tautology in Disturbing Fuzzy Propositional Logic System;
扰动模糊命题逻辑系统中的广义重言式
Tense operators E(ever)and F(will)as well as their dual operators H(ever always be) and G(will always be) were introduced into lattice-valued propositional logic system LP(X), forming a lattice-valued tense propositional logic system LTP(X).
在格值命题逻辑系统LP(X)中引入时态算子E(曾经)和F(将会)以及它们的对偶算子H(曾经总是)和G(将会总是),建立了一个以时轴为语境的格值时态命题逻辑系统LTP(X)。
extension principle of propositional logic
命题逻辑的外延性原理
Theory of Truth Degree in Lukasiewicz 3-valued Propositional Loggic;
Lukasiewicz三值命题逻辑中命题的真度理论
Theory of Truth Degrees in Lukasiewicz n-Valued Propositional Logic;
Lukasiewicz n值命题逻辑中命题的真度理论
Research and Analysis of Probability Logic Based on Universal Logics;
基于泛逻辑学的概率命题逻辑的研究与分析
Maximal Proposional Sets and Complete Proposional Sets in the Classical Proposional Logical Systems
二值命题逻辑中的极大命题集与完备命题集
Probability Truth Degree of Multi-valued Propositional Logic and Intuitionistic Fuzzy Propositional Logic System;
多值命题逻辑和直觉模糊命题逻辑公式的概率α-真度
Comparison between the Classical Propositional and the Propositional Modal Systems
古典命题逻辑与模态命题逻辑的形式系统之比较
On the Decidability of Paraconsistent Propositional Logics Cn;
弗协调命题逻辑C_n的判定性问题
Probability Truth Degree of Two Fuzzy Propositional Logic Systems;
两种模糊命题逻辑的公式的概率真度
Interval-Valued Fuzzy Propositional Logic and Its Generalized Tautology;
区间值模糊命题逻辑及其广义重言式
Modificatory Atanassov Logical and Its Generalized Tautology;
修正的Atanassov命题逻辑及其广义重言式
The Study of the Integrated Resemblance Degrees and the Distance in the Propositional Logic Systems;
命题逻辑公式的相似度与距离之研究
On Probability Truth Degree of Propositions in Two-valued Logic;
二值命题逻辑中公式的一种概率真度
Scheme of Stratification Syntax on Fuzzy Propositional Logic;
L-Fuzzy命题逻辑系统的语构分层方案
Scheme of Stratification Semantic on Fuzzy Propositional Logic;
Fuzzy命题逻辑系统的语义分层方案
Basic Deductive Chain in Two-valued Propositional Logic F(S_n)
二值命题逻辑F(S_n)中的基本推理链
Proposition relativity and logic calculation in probabilistic logic;
概率逻辑中的命题相关性与逻辑运算
Fact Proposition, Value Proposition, Norm Proposition and Their Logic
事实命题、价值命题、规范命题及其逻辑