This paper investigates from the unified view the relations between the separation and quasi-compactness of the various topologies on the closed set lattice of a topological space and those of the original topology.
本文对拓扑空间闭集格上的各种拓扑与空间原有拓扑在分离性、拟紧方面的关系进行了统一的研究,揭示出拓扑与格间的部分的固有联
We present that the C0-semigroup generated by the system operator is quasi-compact by analyzing its essential growth bound.
于是作为半群拟紧性和不可约性的直接结果,得到了系统的时间依赖解指数收敛到其静态解,并且该静态解即为系统算子简单特征值0对应的正的特征向量。