This paper considers a general linear elliptic complex equation of first order in the plane, and proves that the weakly regular solutions must be the regular ones under condition C ′.
考虑复平面上一般一阶线性椭圆型复方程 ,在条件 C′下 ,证明了其弱正则解必为正则解 。
On the weak regularity of semilattice sums and supplementary semilattice sums of rings;
环的半格和与补半格和的弱正则性
By introducing first the concept of weak inner and weak orthogonal complement,we have testified the uniqueness of weak orthogonal complement and finally give the solving process for the homogeneous linear equations with the same solution space.
在一般的线性空间中引入弱内积,使之成为弱内积空间,再引入弱正交、弱正交补概念,证明了任何数域上的线性空间都是弱内积空间、任何弱内积空间的子空间都有唯一的弱正交补,揭示了齐次线性方程组的解空间与系数矩阵的行空间的对称性。
By introducing first the concept of weak inner and weak orthogonal complement,we have testified the uniqueness of weak orthogonal complement and finally give the necessary and sufficient condition for the same solution of the homogeneous linear equations.
在一般的线性空间中引入弱内积,使之成为弱内积空间,再引入弱正交、弱正交补概念,证明了任何数域上的线性空间都是弱内积空间、任何弱内积空间的子空间都有唯一的弱正交补,并给出了齐次线性方程组同解的一个充分必要条件。