The elimination theorem is given,and the elimination algorithm on the generators of ideals is described, where the generators is a Grbner basis on the elimination order.
利用四元数除环上多项式环的Gr bner基理论得到了消元定理 ,利用消元定理给出求理想生成元的消元算法 ,且该生成元是相对消元序的Gr bner基 ;研究了多项式映射 φ的核Kerφ的Gr bner基和给出算法来判定 φ是否是映上的 。
Algebraic elimination oflinear equationsis explained asthe trace element of geom rtry element orthe projection of geometry element.
本文以坐标系为媒介, 投影为方法、将解析几何, 线性代数, 画法几何做了横向地联系, 研究了四维坐标空间的几何元素, 得出线性方程组的代数消元可以解释为几何元素的迹元素或是几何元素的投影。
The configuration problem of planar 2-loop basic chain is studied using elimination method with decoupled leading terms.
在阐述主项解耦消元法基本原理和算法的基础上 ,研究了平面双环基本链的装配构型问题。
Using the elimination method with decoupling of leadin g terms for a polynomial set presented by the author, a polynomial set of an or iginal geometry statement of a geometry theorem can be translated into an ascend i ng polynomial set with leading coefficients without unknown variables.
用多项式组主项解耦消元法 ,将几何定理的假设条件 (多项式组PS)化为主系数不含变元的三角型多项式组DTS ,可得到定理命题成立的不含变元的非退化条件 ,即充分必要或更接近充分必要的非退化条件 由于多项式主系数不含变元 ,已不存在DTS多项式之间的约化问题 ,故方法有普遍意义 文中例为西姆松定理的机器证
Therefore,kinds of factors causing errors are discussed,and then elimination method,improved Akima interpolation and other related solving methods are presented.
在硬件设备基础上,分析了在装载机自动测重过程中的各种误差源,并提出消元法及改进性Akima插值等算法修正各种误差,解决了多年来存在于装载机动态称重系统中的瓶颈问题,使系统称重精度达1%,并建立了一套简捷可行的现场调试方法。
In analysis of structure matrix,Gauss elimination method is often used to solve unknown displacement.
结构矩阵分析中,经常利用高斯消元法来求解未知位移,一般认为高斯消元仅为一种数学过程,而实际其包含着深刻的物理意义。
The Elimination by Step-Adjust to Solove Morbid Equations;
对一类病态方程组的逐次调整消元法解法
From the elimination in Arithmetic in Nine Sections to the automated theorem proving;
从九章消元法到定理机器证明
Application of Elimination in Trian gular Proof;
消元法在三角证明题中的应用
A suitable transformation(trigonometric function method)is found to change nonlinear Boussinesq differential equations into nonlinear algebra equations,which are solved by Wu elimination method and therewith the general soliton solutions of Boussinesq differential equations are obtained.
用吴消元法求解该非线性代数方程组,从而获得一般形式Boussinesq微分方程的广义孤子解。
We propose to solve this multi dimension assignment problem with an elimination algorithm.
通过对分配问题的模型进行分析 ,结合矩阵变换 ,得到消元的几个定理 ,并结合计算机仿真分析 ,给出了一种消元算法。