The inverse problems for positive definite and semipositive definite matrices of equation AX=B on manifold;
流形上矩阵方程AX=B的正定及半正定阵的反问题
The new method of judgement for matrix positive definite in Euclid space;
Euclid空间中矩阵正定性判别的新方法
Some notes on the positive definite problem of a binary n- form;
关于一类二元n次型正定问题的若干注记
The complex matrix solutions with Hermite part positive semidefinite and Hermite positive semidefinite for the matrix equation(A*XA,B*XB)=(C,D) is investigated.
研究了复矩阵方程(A*XA,B*XB)=(C,D)有Hermite部分是半正定的解与Hermite半正定解的可解性条件。
Research on the fast calculation model of positive definite matrix in-situ replacement;
正定矩阵原位替换快速解算模型研究
A sufficient condition of determination a real symmetry matrix into a positive definite matrix;
判定实对称矩阵为正定矩阵的一个充分条件
Oppenheim s inequality over real Symetric positive definite matrix;
实对称正定矩阵上的Oppenheim不等式
Appling positive definite function,this paper obtained the turning point and termination problem about Lanchester equation with variable coefficients.
消耗率系数为常数的Lanchester型战争方程的终止问题在[1]、[2]中得到解决,本文利用正定函数可得到变系数Lanchester型现代战争方程的转折点或终止问题。
Beginning with the basic conceptualism,an optimizing mode is employed to decide weight in general condition and obtained a series of weight methods of covariance matrix which is positive matrix.
文章引入了加权平均量的自收敛性来描绘被评价分数的随机变量的稳定性,以概率论理论为基础,得到了一般情况下权重系数确定的优化模型和协方差矩阵为正定矩阵的一系列的确定权的方法,建立了一套较完整的确定权重系数的理论。
The coefficient matrix of the equations is a kind of positive matrix.
这种方程组的系数矩阵是正定矩阵 ,可用平方根法求解。
According to the definition of subde finite positive matrix, which given by C.
根据 Johnson给出的亚正定矩阵的定义 ,给出了一个关于亚正定矩阵的充分条件 。
The positive definite and determinant inequalities of complex matrix;
复矩阵的正定性及行列式不等式
This basis function is radial symmetrical,positive definite,derivable for any order,and compact support.
为此,介绍一种基函数,给出了单变量基函数及其一、二阶导数表达式和多变量基函数表达式及其图形,该基函数性质好,是径向对称的,正定性,具有紧支撑,而且是任意阶可导的,因此这种基函数具有重要的应用价值。
in this paper, the fast that matrix E in Markowitz model is positive definite or not is discussed and conclusion is that it is never positive definite one.
对Markowitz模型当中的投资组合协方差矩阵的正定性进行了分析,说明该矩阵在一般条件下不具有正定性,并针对该模型提出了一种新的迭代求解方法,提出的求解方法不要求投资组合协方差矩阵满足正定性,因此比以往的一些方法更具实用性。