This paper established the necessary and sufficient condition for existence of (set-valued) metric projection on the linear manifold in arbitary Banach space by the normalized duality mapping.
借助于正规对偶映射,建立了一般Banach空间中线性流形上的(集值)度量投影存在的 充要条件,同时给出了度量投影的表达式和点到线性流形上的距离公式。
The necessary and sufficient condition for existence of the best approximation operator on the linear manifold in arbitary Banach space is given, and a expression of the corresponding best approximation operator by the normalized duality mapping is obtained.
给出了一般Banach空间中线性流形上的最佳逼近算子存在的充要条件,并借助于正规对偶映射得到了相应的最佳逼近算子的表达式。
Based on this work,the paper adopts a positive rule mapping idea to establish the firewall rules.
通过引入嵌入式系统柔性总线并对其进行形式化数学描述,实现具有通用性的底层架构,在此基础上采用正向规则映射思想建立防火墙规则。