The paper finally concluded that φwas the minimum positive real numberof 0,π/2·q/p·π/2(q/p as airreducible proper fraction) and otber four cases.
本文探讨如何找最小正实数k,使f(x)=sin(kx+)在任意两个整数间至少有一个最大值1与一个最小值-1,导出了函数f(x)的周期T与f(x)具有上述性质的关系,然后把问题简化为在0≤φ≤π/2的范围内讨论,并得出了φ为0,π/2,q/p·π/2(q/p为既约真分数)及其它四种情况的最小正实数k。
On positive realness of state feedback control for continuous-time descriptor systems based on GARI;
基于GARI的连续广义系统正实反馈设计
By using the matrix block and simple algebraic transformations,sufficient and necessary conditions on positive realness for discrete-time case have been derived.
目的研究离散广义系统严格正实分析和控制问题。
By analyzing the relationships between the positive realness and passivity,a new lemma is derived in the condition of casual.
目的研究和解决离散型线性时不变广义系统的正实控制问题。
The problems of positive real analysis and synthesis for a class of uncertain discrete-time systems are considered.
考虑了一类不确定离散系统的严格正实分析和设计问题,其中不确定性具有线性分式形式。
To discuss the strictly positive realness judgment criteria of singularly perturbed systems,a singular system model is employed,and the existing positive real lemma of singular systems is improved.
利用广义系统模型,通过改进已有的广义系统正实引理,讨论了奇异摄动系统的正实性判断问题。
Pole placement requirement is transformed into the positive realness and solving controller with linear matrix inequality.
对不稳定非最小相位系统,提出了一种新的极点配置方法,将极点配置问题转换为正实性问题,用线性矩阵不等式求解控制器,并指出a/3将是鲁棒设计时ωc的极限值。
Positive realness is an important concept in system、network and control theory.
正实性问题是系统、网络和控制理论中的一个很重要的概念。
Based on the conditions, robustly strict positive real control of the.
基于这个充分必要条件 ,考虑了这类不确定系统的鲁棒严格正实控制 。
The observer-based positive real control problem for a class of linear systems with general uncertainties is considered.
本文考虑了一类基于观测器的线性不确定系统的正实控制问题,其中它的不确定性更具一般性。
The positive real control problem for the linear systems is considered in this paper.
本文主要考虑了相关线性系统的正实控制问题,全文的内容主要包括以下部分:第一部分:介绍了控制理论的发展情况,包括线性控制理论的发展和非线性控制理论的发展,并简述了当前控制和系统理论研究的几大热点,有鲁棒控制、智能控制和正实控制。
Based on these relationships, some important theorems in modern control theory such as Positive Real Lemma, Bounded Real Lemma, and Popov criterion can be derived directly, as illustrated in this paper.
基于这种等价关系,可以直接求得当前控制理论中的几个重要定理:正实引理、有界实引理和Popov判据。
The sufficient condition for the mixed μ strictly positive realness synthesis is given in the time domain.
根据有理函数矩阵严格正实的概念,采用一系列等价变换,推导出易于混合μ综合的状态空间实现。
This paper gives the new results of strictly positive realness of a fixed plant firstly,proves the new results if the results of Chapellat Theorem.
首先给出了确定对象严格正实的新的充要条件,证明了新的结果完全等价于Chapellate的结果,在此基础上,推出了区间系统严格正实的顶点结果,使得区间系统严格正实问题转化为有限个对象严格正实问题,最后,给出了区间Lue′e系统的鲁棒Popov准则的顶点结果。