A left continuous triangle norm and its adjoint implication operator are based on.
以左连续三角模及其伴随蕴涵算子→为出发点,给出了强三角模的概念,并推导出了强三角模对应的三角余模及其伴随算子*,给出了强BCK-代数的概念,并讨论了它们之间的关系。
Let R be a left continuous ring, then R be a left Artinian iff R satisfies left restricted finite condition iff R satisfies DCC on essential left ideals iff R satisfies ACC on essential left ideals.
(1)设R是左连续环,则R是在Artin环当且仅当R满足左限制有限条件当且仅当R关于本质左理想满足极小条件当且仅当R关于本质左理想满足极大条件,同时给出一个左自内射环是QF环的充要条件;(2)证明了左 Z1-环上的有限生成模都有 Artin-Rees性质。
Then we work out the distinguished involutions of left cells in the two-sided cells of the arBne Weyl groups of type E with a-value 4, and we prove that these left cells are all left-connected, which verify a conjecture of Lu.
本文利用时俭益给出的求仿射Weyl群左胞腔代表元的方法,给出了仿射Weyl群(?)_6的a-值不大于11的所有双边胞腔中的左胞腔代表元,构造了它们的左胞腔图;同时本文还给出了仿射Weyl群(?)_7和(?)_8的a-值等于4的双边胞腔中的左胞腔代表元;对于a-值等于4的E型仿射Weyl群的双边胞腔,本文还给出了它们的左胞腔的特异对合元,并且证明了这些左胞腔的左连通性。
We provethat all the left cells in W_(5) and W_(6)~1 are left-connected,verifying a conjecture ofLusztig in our case.
本文主要研究的是仿射Wleyl群a-值等于5的双边胞腔W_(5)和a-值等于6的双边胞腔W_(6)~1中的左胞腔,找出了双边胞腔W_(5)和W_(6)~1中的左胞腔代表元,画出了它们的左胞腔图,并证明了W_(5)和W_(6)~1中的左胞腔的左连通性和得到了左胞腔的特异对合元。