Direct Determination of Cysteine in Health Serous by Semidifferential Adsorptive Stripping Volatmmetry;
多阶溶出伏安法直接测定健康人血清中半光氨酸的含量
Under the assumptions of semismoothness,the global superlinear con- vergence of the smoothing Newton method was proved.
在半光滑假设条件下,证明了光滑化牛顿法具有全局超线性收敛性。
A semismooth equation obtained by an NCP function for the KKT first-order optimality conditions and a mixed quasi-newton method for this equation are discussed.
讨论了利用NCP函数将KKT条件转化为与之等价的一个半光滑等式,并针对求解这个半光滑KKT等式的混合拟牛顿算法,在比较弱的条件下,证明了算法所计算的序列中原问题变量的超线性收敛性。
We reformulate the problem for finding KKT points of the nonlinear constrained optimization problem as a system of semismooth equations by using the new NCP function.
构造半光滑方程组,用来求解非线性约束最优化问题的KKT点,然后用新提出的广义非精确牛顿法解这个半光滑方程组。
We reformulate the problem for finding KKT points of the nonlinear constrained optimization problem as a system of semismooth equations by using QP-free methods and Lagrangian Multiplier Methods.
例如,把求解非线性约束优化问题的KKT点问题分别用QP-free方法,乘子法转化为解半光滑方程组或无约束优化问题。
Projected Newton-like methods for solving bound-constrained semi-smooth equations are proposed.
给出了解决带变量有界约束的半光滑方程组问题的投影牛顿类法,该法避免了迭代点落在约束区间之外的可能,采用将每步的牛顿类方向在可行集上做投影的方法迫使迭代点始终落在可行集内,并根据具体算法步骤进行了收敛性分析。