In mathematical analysis,it is difficult to count several improper integrals,such as Fresnel integral,because it need use some special techniques.
在数学分析中,菲涅耳积分等几个重要的广义积分计算时需要引入一些特殊的技巧,一般难于掌握。
The Fresnel integral can be computed on the basis of geometrical properties of the Cornu spiral.
利用科纽卷线的几何特性 ,可以计算菲涅耳积分。
Computing complex argument Fresnel integral is a difficult problem meeting in electromagnetic scattering of lossy dielectric wedges.
本文综合运用了复宗量菲涅耳积分的小宗量级数展开和大宗量渐近展开,并且找到了大宗量展开与小宗量展开的衔接部,圆满地解决了菲涅耳积分在整个复平面内的计算机计算问题。
The expressions of Gaussian beam are obtained respectively by using Fresnel diffraction integral and Helmholtz e-quation under the circumstances of slowly varying amplitude approximation.
使用菲涅耳衍射积分公式,推导出在自由空间传播的高斯光束表达式,与用亥姆霍兹方程在缓变振幅近似下求得的结果作比较,得出在计算高斯光束时两种近似方法是等效的,计算时可以根据需要进行适当的选择。
Applying the Huygens-Fresnel diffractive integral,the on-axis intensity distribution and the phenomena of focal shift and focal switch are theoretical studied when a partially coherent annular light is focused by a lens.
为了从理论上对部分相干环形光束被透镜聚焦后轴上点的光强分布以及焦移和焦开关现象进行研究,采用惠更斯-菲涅耳衍射积分方法进行了理论分析,取得了轴上点光强分布及焦移、焦开关现象的相关数据。