First, some properties of parameters r, q, δ which satisfy these restricted equation by using the property of matrix trace were got.
从两方面探讨了Lyapunov方程的性质:即从矩阵迹的角度给出该方程成立的条件和从矩阵特征值的角度进一步讨论了相应的性
This paper has testified the matrix trace inequalities are more closely to arithmetical-geometrical average inequalities according to the inequality form, which brought forward as “matrix trace inequalities analogy to the arithmetical-geometrical average inequalities” by R.
Bellman提出的“类似于算术 -几何平均不等式的矩阵迹不等式”在形式上更接近算术-几何平均不等式的矩阵迹不等式 |tr( mk =1Ak) |1 /m ≤ 1m mk =1trAk 且证明了更一般的结论及相关重要结果|tr( mk=1Atkk)|1 /Tm ≤ 1Tm mk=1tk·tr(AkA k) 1 / 2 和| ti=1tr( mk=1A(i)k )|≤ mk=1{ ti=1[tr(A(i)k A(i) k ) αk/ 2 ]βi/αk} 1 / βi,其中Tm = mk =1tk,tk,αk,βi 是正整数 , mk =1α-1k ≥ 1 , ti=1β-1i ≥ 1 。
In general,the trace of matrix deals only with square matrixs,and in this paper,we generalize this trace of matrix to general matrixs.
一般情况下,矩阵迹的计算只涉及到方阵。
Some inequalities of matrix-traces on C~*-algebra M_n(A);
关于C~*-代数M_n(A)上矩阵迹的一些不等式
In this note,for a C*-algebra A,we study the properties of a matrix-trace on the C*-algebra Mn(A) which is a positive linear mapping τ:Mn(A)→A,such that τ(u*au)=τ(a)(a∈Mn(A)),u∈U(Mn(A)) and τ(a2)≤(τ(a))2(a≥0),and obtain some inequalities on arithmetic-geometric mean.
对于C*-代数A,C*-代数Mn(A)上矩阵迹是一个正线性映射τ:Mn(A)→A,满足τ(u*au)=(τa)(a∈Mn(A)),u∈U(Mn(A))和τ(a2)≤(τ(a))2(a≥0)。
Our results were as follows: (1)We divided the class of symmetric primitive matrix with its nonzero trace into two subclasses by the trace of matrix:SB_n=SB_n(Ⅰ)∪〖WTHX〗SB_n(Ⅱ),SB_n(Ⅰ)∩SB_n(Ⅱ)=[FK(W+3.
所得结论是:①把迹非零对称矩阵类SBn按照矩阵的迹划分为互不相交的两大子类:SBn=SBn(Ⅰ)∪SBn(Ⅱ),SBn(Ⅰ)∩SBn(Ⅱ)=Φ;②以无向图G的直径d(G)为参数,确定出子类SBn(Ⅰ)的本原指数集E1={1,2,…,n-1}和子类SBn(Ⅱ)的本原指数集E2={2,3,…,2n-2}\S,其中S是{n,n+1,…,2n-2}中的所有奇数之集;③进而刻画出迹非零对称矩阵类SBn的本原指数集En=E1∪E2={1,2,…,2n-2}\S。
Gives some upper bounds and lower bounds for eigenvalues using trace of matrix.
给出了一些用矩阵的迹表示的特征值的上、下界 。
This paper studies relation between the linear function and the matrix trace, and obtains a number of necessary and sufficient the condition that a linear function is trace of matrix.
讨论线性函数与矩阵的迹的关系 ,给出了一个线性函数是矩阵的迹的若干充要条件。
In this paper,the author discuss several special matrix traces,gives their general results,and illustrates their application in proving correlative questions.
文章讨论了几类特殊矩阵的迹 ,给出了它们的一般结果 ,并举例说明它们在证明相关问题中的应
SOME INEQUALITIES FOR THE TRACE OF HERMITE MATRIX
Hermite矩阵迹的几个不等式
Bellman inequalities of generalized matrix trace
广义矩阵迹的贝尔曼不等式(英文)
SEVERAL IMPORTANT INEQUALITIES OF HERMITE POSITIVE DEFINITE MATRIX TRACE
Hermite正定矩阵迹的几个重要不等式
OPTIMAL ESTIMATIONS IN A GENERAL GROWTH CURVE MODEL BY TRACE MEANS;
矩阵迹意义下的一般增长曲线模型参数的最优估计
A Inequality of Matrices Trace
关于矩阵的迹的一个不等式及其应用
On the trace and eigenvalues of the structure matrix of a graph
图的结构矩阵的迹和特征值(英文)
Some Inequalties for the Trace of Hermitian Matrices;
关于Hermite矩阵的迹的不等式
The Trace of A Positive Semidefinite Hermite Matrix and Its Application;
半正定Hermite矩阵的迹及其应用
Eigenvalues Estimate of Trace Dominent Matrix and Establishment of Fuzzy Judgment Matrix;
对迹占优矩阵特征值的一种估计法及模糊判断矩阵的建立
BESⅡ Error Matrix Correction on Charged Channel
北京谱仪Ⅱ带电径迹测量误差矩阵的修正
The Estimates of Solution of Discrete Lyapunov Equation and the Trace Bound for the Product of Real Square Matrices;
离散Lyapunov方程的解和一般矩阵积的迹界的估计
Non-Negative Matrix Factorization Based Off-line Handwriting Identification;
基于非负矩阵分解算法的离线笔迹鉴别
The base of primitive non-powerful symmetric sign pattern matrices with non-zero traces
迹非零的本原不可幂对称符号模式矩阵的基
Linear rank-1 preservers on spaces of zero-trace matrices over fields
域上迹零矩阵空间上的线性秩1保持(英文)
The square matrix is called a diagonal matrix.
该方矩阵称为对角矩阵。
The matrix is defined as the reciprocal of A.
该矩阵定义为A之逆矩阵。
The Characteristic of Self-conjugate Quaternionic Matrices and Two Necessary and Sufficient Conditions Concerning the Inequalities of the Traces of Quaternionic Matrices;
自共轭四元数矩阵的特征及迹不等式的两个充要条件
Resolubility of Trace Zero Symmetric Stochastic Matrices for the Inverse Eigenvalue Problem;
一类有零迹的对称随机矩阵特征值反问题的可解性