By means of analyzing a variety of references to auxiliary functions when prove Lagrange theorem and researching on typical questions, this paper intends to find the internal rules of constructing auxiliary functions.
通过分析各种教科书对拉格朗日定理证明中引用辅助函数的和典型题目的研究,试图找出构造辅助函数的内在规律。
Then,parameters of object function is evaluated by Lagrange theorem,and clustering algorithm based on intuitionistic fuzzy etropy is presented.
利用拉格朗日定理推导了目标函数参数求解,并给出了基于直觉模糊熵的聚类算法。
On the basis of these theories,Rolle mean value theorem,Lagrange mean value theorem and Cauchy mean value theorem are proved by constructing nested interval.
在此基础上通过构造区间套依次证明了罗尔中值定理、拉格朗日中值定理和柯西中值定理。
This paper gives the new method to prove the Cauchy Mean Value Theorem ,which also may be deduced from the Lagrange Mean Value Theorem.
给出柯西中值定理的一个新的证法, 说明柯西中值定理也可由拉格朗日中值定理导出。
Basing on Lagrange mean value theorem of a circular function and Cauchy\'s mean value theorem"value points"Quantitative characterization of the asymptotic,using Taylor\'s formula,"value point\'s"Quantitative characterization of the asymptotic about Lagrange mean value and Cauchy\'s Mean value of a binary function are an obtained.
在一元函数拉格朗日中值定理和柯西中值定理"中值点"渐近性的定量刻画的基础上,利用泰勒公式给出二元函数拉格朗日中值定理和柯西中值定理"中值点"渐近性的一个定量刻画。
On the basis of Lagrangian middle-value theorem,use the fundamental methods of calculus to generalize the three conditions of Lagrangian middle-value theorem,and obtain the corresponding conclusions.
根据拉格朗日中值定理,运用分析的基本方法,推广了拉格朗日中值定理的三个条件,得到并证明了相应的结论。
Proof and application of Lagrange theorem;
拉格朗日中值定理的证明和应用
Helmholtz-Lagrange theorem
亥姆霍兹-拉格朗日定理
The Proving of Lagrange Theorem and the Application of Auxiliary Function;
拉格朗日定理证明与辅助函数的应用
lagrange dirichlet theorem
拉格朗日 狄利克莱定理
lagrange d'alembert principle
拉格朗日 达朗伯原理
lagrange's method of undetermined multipliers
拉格朗日不定乘子法
Lagrange's method of indeterminate coefficients
拉格朗日待定系数法
lagrange's method of undetermined multiplier
拉格朗日的待定乘子法
Lagrange Duality Theorem for Multiobjective Programming with Set Functions
集合函数多目标规划的拉格朗日型对偶定理
To Testify Lagrangian Mean Value Thorem by Constructing an Additive Function with Vector;
运用向量构造辅助函数证明拉格朗日中值定理
Demonstration about the Structure Law of Auxiliary Function by the Lagrange Theorem Mean;
拉格朗日中值定理辅助函数构造法的证明
Creative Thinking Training in Teaching Lagrange s Mean Value Theorem;
从拉格朗日中值定理教学谈创造性思维培养
Different Ways of Testifying the Lagrange Differential Theorem of Mean;
拉格朗日微分中值定理几种不同的证法
This paper gives the new method to prove the Cauchy Mean Value Theorem ,which also may be deduced from the Lagrange Mean Value Theorem.
给出柯西中值定理的一个新的证法, 说明柯西中值定理也可由拉格朗日中值定理导出.
interpretation of Lagrange multiplier
拉格朗日乘数的解释
Lagrange's dynamical equations
拉格朗日动力学方程
Lagrange's planetary equation
拉格朗日行星运动方程
lagrange's hydrodynamic equations
拉格朗日铃运动方程
Lagrange's method of variation of constants
拉格朗日常数变易法