This paper proves that sub - space cannot cover the whole linear space and concludes with some important relevant inferences which provides theoretic basis for the characteristics of linear space.
论证了有限个真子空间复盖不了整个线性空间,并以此得出几个与真子空间有关的重要定理和推论,为深入线性空 间的性质讨论提供了依据。
In this paper mesocompactness is characterized in term of well-monotonecover, interior-preserving cover,suborthocompact and cushioned refinement,which improves the results of Guoshi Gao and Lisheng Wu.
本文利用良序单调复盖、内部保持复盖、次ortho-紧及垫状加细等刻画了中紧性。
Let f (k, r, n ) be the number of the coverings of Rk+r, nk by 1 ×k or k×1 rectangles, F (k, r, x ) be the generating function for the sequence { f (k, r, n ) }, we show that which generalizes the result of Tomescu [ 2, 3
设k≥2,m<2k,本文研究用1×k矩形复盖标号m×n矩形的问题,得到了完全复盖的充要条件,并未得复盖数的生成函教,从而推广了Tomescu[2]的结果。