This paper discusses classical model,formula of total probability,normal distribution,mathematic expectation and the central limit theorem.
围绕古典概型,全概率公式,正态分布,数学期望,极限定理等有关知识,探讨概率统计知识在实际生活中的广泛应用,进一步揭示概率统计与实际生活的密切联系,为应用概率知识解决实际问题,建立数学模型,奠定了一定的理论基础。
The thesis sets up the ready-made flour-product sale profit model by putting forward the conditions on which the maximum mathematic expectation of profit is based.
讨论面点销售利润的模型,提出了获利数学期望最大值的条件,并在此基础上进一步讨论了损失费用的最小值,为销售商的营销策略提供一定的借鉴。
This article is mainly on the basis of the binomial distribution,the multinomial distribution,in the negative binomial distribution foundation to promote the negative binomial distribution fatherly,to give the negative term distributed definition,to infer its probability distribution and to calculate its mathematic expectation and the variance.
本文主要是在二项分布,多项分布,负二项分布的基础上,把负二项分布进一步推广,给出负N项分布的定义,推导出它的概率分布,并计算出其数学期望和方差。
Combining the characteristics of the major of dress design to demonstrate the function of "practice term;
结合服装专业特点发挥“实践学期”作用
A calculation for random variable mathematical expectation;
一个随机变量数学期望的计算
Some calculating methods for mathematical expectation are discussed by making use of the definition,nature and formula of mathematical expectation,the symmetry of random variable distribution,generating function and characteristic function.
利用数学期望的定义、性质、公式、随机变量分布的对称性,以及母函数、特征函数等,探讨了数学期望的几种计算方法。