This paper gives all the nilpotent subgroups and solvable subgroups of symmetric group S5.
给出了S5的全部102个幂零子群和154个可解子群,其中幂零子群分为10个共轭类,可解子群分为17个共轭类,而且给出了每个子群的阶和一个最小生成元组。
In this paper, we investigate the solvability of finite groups by using some semi normal nilpotent subgroups.
本文利用某些幂零子群的半正规性,讨论有限群的可解性,所得结果统一推广了王品超、赵耀庆的若干结果。
In this paper,the method for computing the nilpotent subgroups of symmetric group Sn is studied.
本文研究了对称群Sn的所有幂零子群的计算方法。
With space and time two dimensional signal,a matrix is constructed,and the null space of the matrix is utilized to realize SDMA.
该算法通过对空时二维信号的处理,发送空时二维信号构成一个矩阵,利用矩阵的零子空间以实现空分多址。
In linear space V,to join of some real subspaces,non-null subspace V_0 which makes M∩V_0={0} exists and the biggest dimensionality of V_0 is certain.
在线性空间V中,对于一些真子空间的并集合M来说,一定存在着V的非零子空间V0使得M∩V0={0},并且这些V0的最大维数可确定。
The corresponding relations are given under φ between the maximal nilpotent subgroups and their conjugate classes of GL nR and those of GL nK.
给出了GLnR的极大幂零子群及其共轭类与GLnK的极大幂零子群及其共轭类在 φ下的对应关系 。
Set N be a maximal nilpotent subalgebra of L.
假设R是特征非2的交换幺环,L是R环上的D4型典型李代数,N是李代数L的一个极大幂零子代数。