Given that basic vectors α,β and γ of curve Γ:r=r(s),there curvature and torsion parting for κ,τ.
已知曲线Γ:r=r(s)的基本向量为α,β,γ,曲率和挠率分别为κ,τ,研究了由γ,β和r所作出的曲线Γ-:ρ=r+aγ+b ∫ from n=S_0 to S(βds)的曲率-κ和挠率-τ的计算问题。
Some conditions for the basic vector curvature and torsion of two curves with one-one corresponding relationship are studied when,two of their tangent line,main normal and subnormal parallel or coincide in the corresponding point.
有一一对应关系的 2曲线在对应点处的切线、主法线、副法线中某 2条平行或重合时 ,研究了曲线在该点处的基本向量、曲率、挠率满足的条
When the action of Lie groups G on E n is isometric, the author also obtains the fact that a curve is a line if the projectioin of a fundamental vector field to this curve which does not belong to an orbit is a nonzero constant.
证明了En 在李群G的等距作用下 ,对于一条不位于轨道上的曲线 ,若存在一个基本向量场在它上面的投影为非零常数 ,则它为直
The author got some properties of the fundamental vector fields zero points in complete Riemanian G manifolds, and discussed the orbit types of a kinds of special Riemanian G manifolds.
得出了完备黎曼G 流形上基本向量场零点的一些性质 ;并对一类特殊的黎曼G 流形的轨道型进行了讨
The basic shape vector method is applied to the shape optimization of 3D structure.
将基本形状向量法引入三维结构形状优化设计领域,并对其中的外部边界形状发生变化时内部结构形状的控制、基本形状向量之间的关系、以及生成基本形状向量等关键性技术问题进行了讨论,分别给出了相应的处理算法并通过实际数值算例对本文提出的方法进行了验证。