We give prior estimates at first,then existence and uniqueness of positive radial solution of the problem are also given.
讨论了二阶半线性椭圆方程△u+f(u)=0在环域中的Dirichlet问题,未对f(u)给出增长(临界)指数α=n+2n-2的限制,给出了径向正解的先验估计,以及径向正解的存在唯一性。
Under some assuptions , by meams of varitional method we obtain that there are two distinct positive radial solutions.
在适当的条件下,运用变分方法我们得到了该方程存在两个非平凡径向正
The present paper proves tht the singular boundary value problem for nonlinear ellipticequations in annular dOmainshas a unique positive radial solution l
证明了环域上一类非线性椭圆方程奇异边值问题在中径向正解的存在性和唯一性。
It is proved that the positive radial solutions o f this equation are singular or regular if the growth speed of f(x,·) is le ss than N(p(x)-1)N-p(x) when u→∞.
给出了一类 p(x) - Laplace方程径向正解的分类和奇异解的存在