Experiments of effects of flow parameters on cone and jet diameter in flow focusing;
流动聚焦中锥形和射流直径影响因素的实验研究
On a Conjecture on Fixed Point Indices of Positive Mappings in Cones;
关于正映射锥上不动点指标的一个猜想
By using the theory of index of fixed-point on a cone and Lebesgue s dominated convergence theorem,the existence of positive solutions to the higher-order conjugate boundary-velue problem(-1)n-kx(n)(t)=f(t,x(t)),0<t<1;x(i)(0)=0,i=0,1,…,k-1;x(j)(1)=0,j=0,1,…,n-k-1was investigated.
利用锥上的不动点指数理论和Lebesgue控制收敛定理研究高阶奇异共轭边值问题(-1)n-kx(n)(t)=f(t,x(t)),0
The main methods are fixed point theorems in cones.
当λ>0且充分小时正解的存在性,应用的工具为锥上的不动点。
By using the fixed point theorem on cones,the existence of positive solutions for a class of singular boundary value problems with p-Laplacian operator is studied.
利用锥上的不动点定理研究了一类具有p Laplacian算子型奇异边值问题的正解,得到了在f和g同为超(次)线性或一个为超线性,另一个为次线性的情形下正解存在的充分条件,推广了一些已知结果。
A sufficient condition for the existence of C 2 positive solutions as well as C 3 positive solutions is given by means of the fixed point theorems on cones.
本文利用锥上不动点理论给出了四阶超线性 Emden-Fowler方程奇异边值问题有 C2 [0 ,1]和C3[0 ,1] 正解存在的充分条